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CURVES

We all have a strong intuitive sense of what a curve is. Although we never see a curve
floating around free of any object, we can readily identify the curved edges and silhou-
ettes of objects and easily imagine the curve that describes the path of a moving object.
This chapter explores the mathematical definition of a curve in a form that is very usefid
to geometric modeling and other computer graphics applications: that definition con--
sists of a set of parametric equations. The mathematics of parametric equations is the basis.
for Bézier, NURBS, and Hermite curves. The curves discussed in this chapter may be’
placed in the Hermite family of curves. Bézier curves are the subject of the next chapter,
and NURBS are best left for more advanced texts on geometric modeling. Both plane
curves and space curves are introduced here, followed by discussions of the tangent vec-
tor, blending functions, cenic curves, reparameterization, and continuity and composite
curves,

14.1 Parametric Equations of a Curve

A parametric curve is one whose defining equations are given in terms of a-
single, common, independent variable called the parametric variable. We have already
encountered parametric variables in earlier discussions of vectors, lines, and planes.

Imagine a curve in three-dimensional space. Each point on the curve hasa
unique set of coordinates: a specific x value, y value, and z value. Each coordinate is
controlled by a separate parametric equation, whose general form looks like

x=x(), y=ywm), z=z@u) (14.1)

where x(1) stands for some as yet unspecified function in which # is the independent
variable; for example, x(#) = au® + bu + ¢, and similarly for y(#) and z(u). It is importanti
to understand that each of these is an independent expression. This will become clear as
we discuss specific examples later. -

The dependent variables are the x, y, and z coordinates themselves, becausg
their values depend on the value of the parametric variable 1. Engineers and prograni-
mers who do geometric modeling usually prefer these kinds of expressions because the
coordinates x, y, and z are independent of each other, and each is defined by its own
parametric equation.
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Figure 14.1 Point on @ curve defined by a vector,

Fach point on a curve is defined by a vector p (Figure 14.1). The components
of this vector are x(#), y(1), and z(u). We express this as

p = PG (14.2)

which says that the vector p is a function of the parametric variable u.
There is a lot of information in Equation 14.2. When we expand it into compo-
nent form, it becomes

p() =[xy y) 2] (14.3)

The specific functions that define the vector components of p determine the
shape of the curve. In fact, this is one way to define a curve—by simply choosing or
designing these mathematical functions. There are only a few simple rules that we must
follow: 1) Define each component by a single, common parametric variable, and 2) make
sure that each point on the curve corresponds to a unique value of the parametric variable.
The last rule can be put the another way: Each value of the parametric variable must
correspond to a unique point on the curve.

14.2 Plane Curves

To define plane curves, we use parametric functions that are second degree
polynomials:
x(U) = 2,1% + byt + ¢y
y(u) = ayu? +bu+cy (14.4)
z()y = au® + b+ ¢,
where the 4, b, and ¢ terms are constant coefficients.

We can combine x(u), y(#), z(u), and their respective coefficients into an
equivalent, more concise, vector equation:

p(u) = au* +bu+c (14.5)
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We allow the parametric variable to take on values only in the interval 0 < u < 1. This
ensures that the equation produces a bounded line segment. The coefficients a, b, ¢, in .
this equation are vectors, and each has three components; for example, a = [, ay 4z}

This curve has serious limitations. Although it can generate all the conic curves,
or a close approximation to them, it cannot generate a curve with an inflection point, like
an S-shaped curve, no matter what values we select for the coefficients a, b, ¢. To do this:
requires a cubic polynomial (Section 14.3).

How do we define a specific plane curve, one that we can display, with definite
end points, and a precise orientation in space? First, note in Equation 14.4 or 14.5 that’
there are nine coefficients that we must determine: a,, b,, ..., c.. If we know the two
end points and an intermediate point on the curve, then we know nine quantities that-
we can express in terms of these coefficients (3 points x 3 coordinates each = 9 known
quantities), and we can use these three points to define a unique curve (Figure 14.2).
By applying some simple algebra to these relationships, we can rewrite Equation 14.5
in terms of the three points. To one of the two end points we assign # = 0, and to the
other u = 1. To the intermediate point, we arbitrarily assigh u = 0.5, We can write this
points as

po=[x w 2]
pos = [xos W5  Zos] (14.6)
wa _ Tas

pr=I[x wn zi]

where the subscripts indicate the value of the parametric variable at each point.
Now we solve Equations 14.4 for the a,, by, .. ., ¢; coefficients in terms of these
points. Thus, for xatu = 0, # = 0.5, and u = 1, we have

X = Cx
Xos = 0.25&'1 + 055;( + Cy (14-7)
X1 =d,y + bx + ¢y

with similar equations for y, and z.

Figure 14.2 A plane curve defined by three points.
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Next wesolve these three equations in three unknowns for 4y, by, and ¢y, finding

Ay = 2xg—4xp5 + 20
b, = =3xp+4xp5 — 11 {14.8}

Cy = Xp
Substituting this result into Equation 14.4 yields
x (1) = (2xy — 4x05 + 2314 + (—3x0 + X5 — XU + Xo (14.9)

Again, there are equivalent expressions for y(u) and z{u).
We rewrite Equation 14.9 as follows:

x(U) = (202 — 3u + 1)xg + (—4u® +d)xs + (2u° — uxy (14.10)

Using this result and equivalent expressions for y(u} and z(u), we combine
them into a single vector equation:

p) = (2u? —3u+ Lpo + (—42 + dw)pos + (2 — w)p (14.11)

Equation 14.11 produces the same curve as Equation 14.5. The curve will always
lie in a plane no matter what three peints we choose. Furthermore, it is interesting to
note that the point pys which is on the curve at u = 0.5, is not necessarily half way
along the length of the curve between po and p;. We can show this quite convincingly by
choosing three points to define a curve such that two of them are relatively close together
(Figure 14.3). In fact, if we assign a different value to the parametric variable fot the
intermediate point, then we obtain different values for the coefficients in Equations 14.8.
This, in turn, means that a different curve is produced, although it passes through the
same three points.

Equation 14.5 is the aigebraic form and Equation 14.11 is the geometric form. Each
of these equations can be written more compactly with matrices. Compactness is not the
only advantage to matrix notation. Once a curve is defined in matrix form, we can use
the full power of matrix algebra to solve many geometry problems. S0 now we rewrite

Po

P1  Figure 14.3 Curve defined by three nonuniformiy spaced points.

2]
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Equation 14.5 using the following substitutions:

2 u 1] F:| —aw’+bu+tc (1412
C
U=t u 1] (14.13)
A=[a b o (14.14)
and finally, we obtain
pw) = UA (14.15)

Remember that A is really a matrix of vectors, so that

a Ay 4y
A=|b|=|b b, b, (14.16)
(d €x €y £

The nine terms on the right are called the algebraic coefficients.

Next, we convert Equation 14.11 into matrix form. The,right-hand side
looks like the product of two matrices: [(2u? — 3u + 1) (—412 + 4u) (212 — )] and
fpo pos pil. This means that

Po
plu) = [Qu? = 3u+1) (4l + 4y Qu - w)] l:p0_5j| (14.17)
P
Using the following substitutions:
F=[Qu?—3u+1) (-4 +4dw) Qu?—-w)] (14.18)
and
Po X Y 2o
P=|pos| = |[xs5 ws 2us (14.19)
P LS S-S |

where P is the control point matrix and the nine terms on the right are its elements or the
geometric coefficients, we can now write

p(u) = FP (14.20) .

This is the matrix version of the geometric form.
Because it is the same curve in algebraic form, p(#) = UA, or geometric form,
p(s) = FP, we can write

FP =UA (1421) -
The F matrix is itself the product of two other matrices:

2 -4 2 _.
F=[ u 1]|-3 4 -1 (14.22) -
1 0 ©
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The matrix on the left we recognize as U, and we can denote the other matrix as

2 -4 2
M=|-3 4 -1 (14.23)
1 o 0
This means that
F=UM (14.24)

Using this we substitute appropriately to find
UMP = UA (14.25)
Premultiplying each side of this equation by U~ yields
MP =A {14.26)
This expresses a simple relationship between the algebraic and geometric coefficients
A =MP (14.27)
or
P=MTA (14.28)

The matrix M is called a basis transformation matrix, and F is called a blending
function matrix. There atre other basis transformation matrices and blending function
matrices, as we shall see in the following sections.

14.3 Space Curves

A space curve is not confined to a plane. It is free to twist through space. To
define a space curve we must use parametric functions that are cubic polynomials. For
x (1) we write

x(u) = axu® + byt® + catt + dx (14.29)

with similar expressions for y(#) and z(i). Again, the a, b, ¢, and d terms are constant
coefficients. As we did with Equation 14.5 for a plane curve, we combine the x{(u), y(i),
and z(1) expressions into a single vector equation:

p() = au® + bul +cu+d (14.30)

If a = 0, then this equation is identical to Equation 14.5.
To define a specific curve in space, we use the same approach as we did for
a plane curve. This time, though, there are 12 coefficients to be determined. We specity
four points through which we want the curve to pass, which provides all the information
we need to determine a, b, ¢, and d. But which four points? Two are obvious: p(0) and
p(1), theend points atu = 0 and u = 1. For various reasons beyond the scope of this text,
it furns out to be advantageous to use two intermediate points that we assign parametric
values of u = L and u = %, or p(3) and p(3). So we now have the four points we need:



250 Chapter 14

| ]

P P23

z B Figure 14.4 Four points define a cubic space curve.
0

PO, p(3), p(3), and p(1), which we can rewrite as the more convenient py, p2, ps, and
P4 (Figure 14.4).

Substituting each of the values of the parametric variable (4 = 0, %, %, 1} into
Equation 14.29, we obtain the following four equations in four unknewns:

x’l:dx
1 1 1
x2—-ﬁax+§bx+gcx+dx .
8 a2 (1431)
xﬁ—ﬁax‘i'gx"'acx‘}_x

]

Xqg=ay+by+cr+4dy

Now we can express ay, by, ¢y, and d, in terms of x1, X, x3, and x3. After doing
the necessary algebra, we obtain

_ 9 +27x 27 +9
Ay = le 2 2 *z-xa 2x4

45 9
by =9x; — 312 + 18x3 — EL;

(14.32)
Cr= —Ex + 9x gx + x
x = D) 1 2 5 3 4
fjx =1n
We substitute these results into Equation 14.29, producing
() = . + 27x 27 —|—? u
T\ T2 T R T s T g
45 9
+ (9x1 — —x2 4+ 18x3 — —x4) u’
2 2 (14.33)

+ 113&?—!-9 _?2 X,
5 M1+ 9% 2363+ 3 | U

+x
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All this looks a bit messy right now, but we can put it into a neater, much more
compact form. We begin by rewriting Equation 14.33 as follows:

9 11
x(i) = (——u3 +92 - Zu+ 1) X1

2 2
27 45
+ (Eue' = ?uz + 9u) %

(14.34}
27 4 5
+ *—zu +18u” — 91 J a3

912 94
+(§u ~ 5¥ +u)x4

Using equivalent expressions for y(u) and z(1), we can summarize them with
a single vector equation:

1
p) = (—2u3 +9u? — —u+ 1) P1

2 2
27 45
+ (‘2—113 — ?uz + 9u) Pz

; (14.35)
27
+ ("‘3“3 + 18“2 — Eu) P3

9, 9,
+§u—§u+up4

This means that, given four points assigned successive values of u (in this case at u =
0,4, 2, 1), Equation 14.35 produces a curve that starts at pi, passes through p; and ps,
and ends at p4.

Now let's take one more step toward a more compact notation. Using the
four parametric functions appearing in Equation 14.35, we define a new matrix,
G= [G1 Gg G3 Gq], where

Gy = (—gus +9u — —u+ 1)
Gy = (?2—71:3 -yt 4 Qu)

14.36
Gs = (~22—7u3 + 18u? — *u) ( !
Gy= (%us 2y u)
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and then define a matrix P containing the control points, P = [py p, ps ps]', so that
pe) = GP (14.37)

The matrix G is the product of two other matrices, U and N:
G =UN (14.38)

whereU=[u® #* u 1]and

9
o B 9
N = 2 2 (14.39)
11 9
—— -~ 1
2 ? 2

1 0 a0

(Note that N is ancther example of a basis transformation matrix.)

Now we et
a a, ay 4
A= ||t by b (14.40)
¢ Cx €y €2

la| |4 4, 4.

Using matrices, Equation 14.30 becomes

pu) = UA (14.41)

which looks a lot like Equation 14.15 for a plane curve, except that we have defined new
U and A matrices. In fact, Equation 24.15is a special case of the formulation for a space
curve,

To convert the information in the A matrix into that required for the P matrix,
we do some simple matrix algebra, using Equations 14.37, 14.38, and 14.41. First we have

GP = UNP (14.42)
and then
UA = UNP {14.43)
or more simply
A =NP (14.44

14.4 The Tangent Vector

Another way to define a space curve does not use intermediate points. It uses
the tangents at each end of a curve, instead. Every point on a curve has a straight line
associated with it called the tangent line, which is related to the first derivative of the
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parametric functions x(x), y(#), and z(u), such as those given by Equation 14.30. Thus

d d d
—_ S 4.
T x(u), T y(u), and duz(u) (14.45)

From elementary calculus, we can compute, for example,

dy _ dyGy/du
dx ~ dxtu)/du L)

We can treat d x (i) /du, dy(u)/du, and dz(u#) /du as components of a vector along
the tangent line to the curve. We call this the tangent vector, and define it as

wery — | it Lvni L
p(u)_[a-;x(u)l duy(u)] duz(u}k] (14.47)

* or more simply as
pt=Ix" ¥ 2V (14.48)

(Here the superscript # indicates the first derivative operation with respect to the inde-
pendent variable #.) This is a very powerful idea, and we will now see how to use it to
define a curve,

In the last section, we discussed how to define a curve by specifying four points.
Now we have another way to define a curve. We will still use the two end points, but
instead of two intermediate points, we will use the tangent vectors at each end to supply
the information we need to define a curve (Figure 14.5). By manipulating these tangent
vectors, we can control the slope at each end. The set of vectors po, p1, pj, and pj are called
the boundary conditions. This method itself is called the cubic Hermite interpolation, after
C. Hermite (1822-1901) the French mathematician who made significant contributions
to our understanding of cubic and quintic polynomials.

We differentiate Equation 14.29 to obtain the x component of the tangent vector:

d
a—udx(u) = x* = 33,4 + 2byu + Cx {14.49)

P

Pt Figure 14.5 Defining a curve using end points and tangent vectos,

Mo
po
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Evaluating Equations 14.29 and 14.49 at # = Q u = 1, yields

Xo =d;

Xy=ay+b+c,+4d

i x x x X (1450)
xé‘:cx

xf =3a, +2by + ¢y
Using these four equations in four unknowns, we solve for a., b, ¢,, and d, in
terms of the boundary conditions
dy = 2(Xp — X1) + xc‘,‘ + x{‘
by =3(—x + x1) — 2x — x'
x {(—xo 1) 0 1 (1451)
Cx = X
dx = X0
Substituting the result into Equation 14.29, vields
x(uy = (2% — 221 + xf§f + 2§} + (—3x +3x — 20§ ~ i} + xfutxp (1452
Rearranging terms we can rewrite this as
x(w) = 2u® — 3u? + Dxp + (-2 + 3uP)xy (145
+ (® — 202 4wy + 1 — Py '

Because y(u) and z() have equivalent forms, we can include them by rewriting .
Equation 14.53 in vector form:

pu) = (2u® = 32 + D)po + (—2u° 4 3u?)p, (1450

+ (1 — 20 + wypl + (1° — uP)pt ’

To express Equation 14.54 in matrix notation, we first define a blending function
matrix F=[F, F, F; F,], where

Fi=2uw®—3u2+1
Fp = =213 + 312

Fa=1 -2 +u
342

(1455)

Fa=w —~u

These matrix elements are the polynomial coefficients of the vectors in Equation 14.54,
which we rewrite as

p(u) = Fipo + Fopy + Fapg + Fapl (14.56) -

If we assemble the vectors representing the boundary conditions into a
matrix B,

B=[po p pi p!] (1457)
then
p(u) = FB {14.58)
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Here, again, we write the matrix F as the product of two matrices, U and M, so that

F=UM (14.59)
where
u=[w & u 1] (14.60)
and
2 =2 1 1
-3 3 -2 -1
M=| o o 1 o0 (14.61)

Rewriting Equation 14.58 using these substitutions, we obtain
p(x) = UMB (14.62)

It is easy to show that the relationship between the algebraic and geometric
coefficients for a space curve is the same form as Equation 14.27 for a plane curve. Since

p(u) = UA (14.63)
the relationship between A and B is, again,
A =MB (14.64)

Consider the four vectors that make up the boundary condition matrix. There
is nothing extraordinary about the vectors defining the end points, but what about the
two tangent vectors? A tangent vector certainly defines the slope at one end of the curve,
but a vector has characteristics of both direction and magnitude. All we need to specify
the slope is a unit tangent vector at each end, say to and t,. But po, p1, fo, and t; supply
only 10 of the 12 pieces of information needed to completely determine the curve. 50
the magnitude of the tangent vector is also necessary and contributes to the shape of the
curve. In fact, we can write pj; and pf as

po = moto (14.65)
and
pl =mt (14.66)

Clearly, mp and i are the magnitudes of p; and pj.

Using these relationships, we modify Equation 14.54 as follows:
=@ -3 +1 ~2% 4 3u?

pli) = (2 — 3u” + Dpg + (=207 + 3u")ps (14.67)

T2 = 20 4+ wmgty + (1F — uPymty

Now we can experiment with a curve (Figure 14.6). Let's hold po, p1. to, and
t;, constant and see what happens to the shape of the curve as we vary mg and m;. For
simplicity we will consider a curve in the x, y plane. This means that zg, z1, 2§, and z{
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y
:
gy
mny = i
mg=3 Figure 14.6 The effect of tangent vector
my =3 magnitude on curve shape.
iy
my = 1
My 1
= - X
Po 4l

are all equal to zero. The B matrix for the curve drawn with the bold line (and with
Mo =M = 1) is

Po 0 0 0

N P “ 1 0 0
B= moty |~ |0.707  0.707 0 (14.68)

mity 0.707 —-0.707 0

Carefully consider this array of 12 elements; they uniquely define the curve. By changing
either mp or my, or both, we can change the shape of the curve. But it is a restricted kind
of change, because not only do the end points remain fixed, but the end slopes are also
unchanged!

The three curves drawn with light lines in Figure 14.6 show the effects of
varying g and m;. This is a very powerful tool for designing curves, making it possible
to join up end to end many curves in a smooth way and still exert some control over
the interior shape of each individual curve. For example, as we increase the value of
ny while holding m, fixed, the curve seems to be pushed toward py. Keeping my and
n equal but increasing their value increases the maximum deflection of the curve from
the x axis and increases the curvature at the maximum. (Under some conditions, not
necessatily desirable, we can force a loop to form.)

14.5 Blending Functions

The elements of the blending function matrix F in Equation 14.55 apply to all
parametric cubic curves defined by ends points and tangent vectorsatu = 0and # = 1.
We discussed other blending functions that apply to parametric cubic curves defined
by four points. These are the elements of the matrix G (Equation 14.36). In fact we can
design just about any kind of blending functions, although they may not have many
desirable properties.

What blending functions de is “blend” the effects of given geometric con-
straints, or boundary conditions. Thus, F blends the contributions of py, p1, p§, and pi
to create each point on a curve, and G blends the contributions of py, p2, p3, and py. The
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1
\\ //”
N A
Fl\\ //F2
F Figure 14.7 F blending functions.
/| d \\
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0 u 1

graphs of Iy, F2, F3, and F, (Figure 14.7) reveal the mirror-image symmetry between Fy
and Fs, about the line u = 0.5. This is also true for F3 and F;. We expect this, because there
is nothing intrinsically unique about F1 with respect to F», nor about F; with respect to
F;. The end point py dominates the shape of the curve for low values of u, through the
effect of F1, while point py acting through F; has the greatest influence for values of u
near 1.
Next, we consider the graphs of G, Gz, Gs, and G4 (Figure 14.8). Clearly, G4
and G, are symmetrical, as are Gz and G3. Note thatatu = 0, G1 =1 and G, G3, and

Gy Gs
1 N

\Gi| /] VAN
/ / \[ /

|
| ’

Figure 14.8 G blending functions.
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G4 equal zero; at u = %, G2 = 1and Gy, G, and G4 equal zero; at u = %, Gs=1and Gy,
G2, and G4 equal zero, and finally atu =1, G4 = 1 and G4, G5, and G3 equal zero.

In each case, the blending functions must have certain properties. These prop-
erties are determined primarily by the type of boundary conditions we use to define a
curve, and how we may want to alter and control the shape of the curve.

14.6 Approximating a Conic Curve

It is usually possible to substitute a cubic Hermite curve for many other kinds
of curves. For example, let us try the conic curves: hyperbola, parabola, ellipse, and
circle. Given three points, py, p1, and py, there is a conic curve whose tangents at pgand -
p1 lie along p; — py and p; — py, respectively (Figure 14.9), The conic is also tangent to
a line parallel to p; — pp and offset a distance o H from that same line. The value of p
determines the type of conic curve, where

Hyperbola: 0.5 < p < 1
Parabola: p = 0.5 (14.69)
Ellipse: 0 < p < 0.5

The complete development and proof of this can be found in advanced textbooks.

Figure 14.9 Approximating conic curoes,
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The three points po, p1. pz and p define a cubic Hermite curve that is tangent
to the lines mentioned earlier and its equation is

p) =F[ps p1 4p(p2—po) 4p(p1—p2)]" (14.70)

It turns out that this equation exactly fits a parabola and produces good ap-
proximations to the hyperbola and ellipse. It is interesting to note that the line connecting
the points p; and (p1 — po)/2 intersects the curve at exactly pys, and that the tangent
vector py 5 is tangent to p1 — po.

14.7 Reparameterization

We can change the parametric interval in such a way that neither the shape nor
the position of the curve is changed. A linear function » = f (1) describes this change. For
example, sometimes it is useful to reverse the direction of parameterization of a curve.
This is the simplest form of reparameterization. It is quite easy to do. In this example,
v = —u, where v is the new parametric variable.

Figure 14.10 shows two identically shaped cubic Hermite curves. Their only
difference is that they have opposite directions of parameterization. This means that
Q=p1 qG=-p]

(14.71)
w=p q=-P;
which means we merely interchange po and p; and reverse the directions of the tangent
vectors.

P P}

-

u q‘a
q,

Figure 14.10 Reversing the direction of
parameterization.

Py

q,

a4y
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Here is a more general form of reparameterization for cubic Hermite curves,
We have a curve that is initially parameterized from u; to #; and we must change this
so that the parametric variable ranges from v; o v;. The initial coefficients are p;, p jePis
and pY, and after reparameterization they are gq;, q;, q;, and qj.

There is a simple relationship between these sets of coefficients. The end points
are related like this: q; = p; and q; = p;. The tangent vectors require more thought
and adjustment. Because they are defined by the first derivative of the parametric basis
functions, they are sensitive to the relationship between u and v. A linear relationship
is required to preserve the degree of the parametric equations and the directions of the
tangent vectors. This means that

v=au+b (14.72)

Differentiating Equation 14.72, we obtain dv = adu. Furthermore, we know
that ; = au; +b and v; = au; + b, and we can easily solve for a. Then, since

dx dx
D (14.73)
we find that
v uf — Uiy
q = T o F (14.74)

Now we are ready to state the complete relationship between the two sets of
geometric coefficients:

R U_Hj‘—uf o
q: = pi q; = v}__wPi urs
P N B (14.75)
q} p,f q} Uj—?)fp‘r

This tells us that the tangent vector magnitudes must change to accommodate a change
in the range of the parametric variable. The magnitudes are scaled by the ratio of the
ranges of the parametric variables. The directions of the tangent vectors and the shape
and position of the curve are preserved.

14.8 Continuity and Gomposite Curves

There are many situations in which a single curve is not versatile enough to
model a complex shape, and we must join two or more curves together end fo end to
achieve a design objective. In most cases, but certainly not all, a smooth transition from
one curve to the next is a desirable property. We can do this by making the tangent
vectors of adjoining curves collinear. However, it is not necessary that their magnitudes
are equal, just their direction,

Figure 14.11 shows two curves, p(#) and q(v), with tangent continuity. This
imposes certain constraints on the geometric coefficients. First, since py and qp must
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Figure 14.11 Two curves joined with tangent

continuity.
pt ¥

Py

coincide, we have qu = p1. Second, the tangent vectors p} and qj must be in the same
direction, although their magnitudes may differ. This means that qy = kpj, and the
geometric coefficients of g(v) satistying these constraints are

B,=[p @ k¢ @] (14.76)

A composite curve like this has a total of 19 degrees of freedom (compared with 24 for
two disjoint curves),

There are various degrees of parametric continuity denoted C”, where # is the
degree. C° is the minimum degree of continuity between two curves, and indicates
that the curves are joined without regard for tangent continuity {(i.e., the tangent line is
discontinuous at their common point). C! indicates first derivative or tangent continuity
(discussed earlier), which, of course, presupposes C”. C? indicates second derivative
continuity, and is necessary when continuity of curvature at the joint is required. Higher-
degree continuity across a joint between two curves is seldom used. There is a related
kind of continuity called geometric continuity, denoted as G", which is not discussed here,
but is accessible in more advanced texts.

The notation used in Figure 14.11 and Equation 14.76 is inadequate if more than
two or three curves must be used to define a complex curve. A more practical system
is suggested here, If n piecewise cubic Hermite curves are joined to form a composite
curve of C! continuity, we may proceed as follows (Figure 14.12):

1. Label the points consecutively; p1. P2, - ... Pis -+ -+ Pn—1, Pn-
2. Define unit tangent vectors, ti, t2, ..., i, ..., b1, b
3. Define tangent vector magnitudes, m10, m1,1, ..., M0, Mi1, - ., a0, M i
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oMby Figure 14.12 General notation for composite

CHYTEs.

Using this notation, the geometric coefficients for curve i are

B=[Px' Piv1 b mr’,lti+1]T (14.77)

Exercises

14.1 Find a, b, and ¢ for each of the curves defined by the following sets of points:
a.p=[0 2 2l,pos=[1 4 Ol,p=[3 1 6]
b.pp=[-1 0 4],pos=[0 0 0], p1=[0 -2 -2]
[+ p(}:[—3 7 1],1)0_5:[5 1 4],p1=[6 0 U]
dp=I[7 7 8,ps=[2 0 3, pp=[2 —4 1]
eepp=[0 -1 2L,ps=[-1 -3 7l,pp=[0 5 2]

14.2 Find po, pos, and py for each of the curves defined by the following sets of algebraic
vectors:
aa=[1 0 0,b=[-3 -3 0],c=[3 0 0]

.a=[6 9 8],b=[-8 -2 4},c=[-4 6 1]

a=[8 1 -1],b=[5 4 -5],¢=[-10 4 --3]

.a=[10 6 6],b=[-15 —-17 -13l,c¢=1[7 7 8]

a=[-2 -4 4].b=[3 2 -10],c=]-1 0 4]

man o

14.3 What are the dimensions of the matrices in Equation 14.257 Verify the dimensions
of the product.

,:0 1 lj‘

144 Find AwhenP= |3 -2 0

2 5 —4

145 Find M

14.6 Describe the curve that results if pg, pos, and p;y are collinear.

14.7 Give the general geometric coefficients of a curve that lies in the x, y plane.
14.8 Give the general geometric coefficients of a curve that lies in the y = —3 plane.
149 Compute Gy, Gy, G3, and Ggatu =0.

14.10 Compute G, G, G3, and G4 atu = 1.
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14.11 Compute Gy, Gy, Ga, and Gy atu = 1.
1412 Compute G, G2, G3, and Gy at u = 4.

14,13 What general conditions must be imposed on the four control points p1, p2, ps,
and p4 to produce a curve that lies in the x, ¥ plane?

14.14 Compute dy/dx for the following functions:
a. y=4x? d y=x>+2x+1
b. y=x+3 e. y=2x'++3
c y=x>—3x+1

1415 Find the coordinates of the point of zero slope for each of the curves defined in
Exercise 14.14.

14.16 Compute #t and tp tor the following tangent vectors:
a. py=[3 -1 6] d pj=17 2 0]
b. pf=[0 2 0] e. pp=4 4 -3]
c pp=I[1 5 -1]

14.17 Find d2y/dx? for the functions given in Exercise 14.14.

14.18 Given two disjoint (unconnected) curves, p(u) and q(u), join p; to qo with a curve
r(u) such that there is C' continuity across the two joints. Write the geometric
coefficients B, in terms of the coefficients of p(u) and q(u).

14.19 How many degrees of freedom (unique coefficients) are required to define the
system of three curves created in Exercise 14.18?

14.20 Use the results of Exercise 14.18 to construct a closed composite curve with C’
continuity by joining q; to py with a curve s(u). Write the geometric coefficients
B; in terms of the coefficients of p(1) and q(u).

1421 How many degrees of freedom does the closed composite curve of Exercise 14.20
have?



