Krivulje - Curves

1. Introduction

Osnovni cilj ovog poglavlja

1.1 Representation of Curves

D. F. Rogers and J. A. Adams, Methematical Elements for Computer Graphics, McGraw-Hill Book Company, New York, 1976, Chapter 5 Space Curves, p. 136-138:
Space curves may be represented either nonparametrically or parametrically. Three-dimensional space curves expressed in nonparametric form are given explicitly by a set of equations of the form:

$$
\begin{align*}
& x=x \\
& y=f(x) \tag{1}\\
& z=g(x)
\end{align*}
$$

Alternately a space qurve my be expressed in a nonparametric, implicit form. In this case the space curve is represented mathematically by the intersection of the two surfaces given by:

$$
\begin{align*}
& f(x, y, z)=0 \tag{2}\\
& g(x, y, z)=0
\end{align*}
$$

In general, a parametric space curve is expressed as:

$$
\begin{align*}
& x=x(u) \\
& y=y(u) \tag{3}\\
& z=z(u)
\end{align*}
$$

where the parameter u varies over a given range $u_{1} \leq u \leq u_{2}$. Reconsidering Eq. (1) we see that x itself can be considered a parametar, $u=t$, and the same is then expressed in parametric form by:

$$
\begin{align*}
& x=u \\
& y=y(u) \tag{3}\\
& z=z(u)
\end{align*}
$$

When an analytical description for a curve is not known, an interpolation sheme my be used to fit a curve through a given set of data points. This involves specifying boundary conditions for the space curve in order to determine the coefficients for a given polynomial curve form and establishing a smoothness criterion.
When the input is a series of points which lie on the desired curve, spline segments are often used to form a smooth curve through the points.

Representation of Curves:

a) eksplicitni oblik - nemogućnost prikaza višestrukih vrijednosti

$$
y=f(x), \quad z=g(x)
$$

b) implicitni oblik - za prikaz dijela krivulje trebaju dodatni uvjeti

$$
F(x, y, z)=0
$$

c) parametarski oblik

$$
x=\mathrm{x}(t), \quad y=\mathrm{y}(t), \quad z=\mathrm{z}(t) .
$$

točka na krivulji - vektorska funkcija

$$
\mathrm{V}(t)=\left[\begin{array}{lll}
\mathrm{x}(t) & \mathrm{y}(t) & \mathrm{z}(t)
\end{array}\right]
$$

vektor tangente

$$
\mathrm{V}^{\prime}(t)=\left[\begin{array}{lll}
\mathrm{x}^{\prime}(t) & \mathrm{y}^{\prime}(t) \quad \mathrm{z}^{\prime}(t)
\end{array}\right] . \quad \mathrm{V}\left(t_{i}\right)=\vec{p}\left(t_{i}\right)=\vec{p}_{t_{i}}
$$

Two types of equations for curve representation

(1) Parametric equation
$\mathbf{x}, \mathbf{y}, \mathbf{z}$ coordinates are related by a parametric variable $(u$ or $\theta)$
(2) Nonparametric equation
x, y, z coordinates are related by a function

Example: Circle (2-D)

Parametric equation

$$
x=R \cos \theta, \quad y=R \sin \theta \quad(0 \leq \theta \leq 2 \pi)
$$

Nonparametric equation

$$
\begin{array}{ll}
x^{2}+y^{2}-R^{2}=0 & \text { (Implicit nonparametric form) } \\
y= \pm \sqrt{R^{2}-x^{2}} & \text { (Explicit nonparametric form) }
\end{array}
$$

Two types of curve equations

(1) Parametric equation Point on 2-D curve: $\mathbf{p}=\left[\begin{array}{ll}x(u) & y(u)\end{array}\right]$

Point on 3-D surface: $\mathbf{p}=\left[\begin{array}{lll}x(u) & y(u) & z(u)\end{array}\right]$
u : parametric variable and independent variable
(2) Nonparametric equation $\quad y=f(x): 2-\mathrm{D}, \quad z=f(x, y): 3-\mathrm{D}$

Which is better for CAD/CAE? : Parametric equation

It also is good for calculating the points at a certain interval along a curve.

Notes about Curves:

- analitički izraz izvorne krivulje u pravilu je nepoznat
- poznato je
- koordinate u nekim točkama
- nagibi, zakrivljenost ili izvijanje u nekim točkama
\Rightarrow modeliranje
- opis segmenta krivulje
- segmentiranje
- povezivanje segmenata uz ostvarivanje kontinuiteta između segmenata

1.2 Podjela krivulja:

- aproksimacijske
- interpolacijske

- otvorene
- zatvorene

- razlomljene
- nerazlomljene

$$
x(t)=\frac{a_{1} t^{3}+b_{1} t^{2}+c_{1} t+d_{1}}{a t^{3}+b t^{2}+c t+d} \quad x(t)=a_{1} t^{3}+b_{1} t^{2}+c_{1} t+d_{1}
$$

- periodične
- neperiodične
 (periodičnost težinskih funkcija)

1.3 Poželjna svojstva krivulja:

- višestruke vrijednosti
- neovisnost o koordinatnom sustavu (Kartezijev, polarni)

- lokalni nadzor

- smanjenje varijacije - kod visokog stupnja polinoma može se javiti titranje krivulje

- kontrola reda neprekinutosti

ista vrijednost koordinate

ista tangenta \square —a

C^{2}
kontinuitet radijusa zakrivljenosti

kontinuitet u izvijanju
C^{0} - ista vrijednost koordinate

$$
\mathrm{f}(\mathrm{t})=\mathrm{g}(\mathrm{t})
$$

C^{1} - ista vrijednost derivacije $\mathrm{f}^{\prime}(\mathrm{t})=\mathrm{g}^{\prime}(\mathrm{t})$
C^{2} - ista vrijednost druge derivacije

Zakrivljenost krivulje obrnuto je proporcionalna radijusu oskulatorne kružnice.
Ako je radijus velik zakrivljenost je mala (i obrnuto).
C^{3} - ista vrijednost treće derivacije

$$
f^{\prime}{ }^{\prime \prime}(t)=g^{\prime \prime \prime}(t)
$$

Osim C kontinuiteta postoje i G kontinuiteti koji zahtijevaju proporcionalnost. G (geometrijski)
G^{1} - proporcionalna vrijednost derivacije
G^{2} - proporcionalna vrijednost druge derivacije G^{3} - proporcionalna vrijednost treće derivacije

$$
\begin{aligned}
& f^{\prime}(t)=k_{1} g^{\prime}(t), k_{1}>0 \\
& f^{\prime \prime \prime}(t)=k_{2} g^{\prime \prime}(t), k_{2}>0 \\
& f^{\prime \prime \prime}(t)=k_{3} g^{\prime \prime \prime}(t), k_{3}>0
\end{aligned}
$$

C^{1} kontinuitet implicira G^{1} kontinuitet osim kada je vektor tangente $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ kod C^{1} kontinuiteta može doći do promjene smjera, $k o d \mathrm{G}^{1}$ ne može.

